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Corner Spontaneous Magnetization 
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Details are given of a new method allowing an exact calculation of the spon- 
taneous magnetization in the comer as well as along the edge at an arbitrary 
distance of the comer for a rectangular planar Ising ferromagnet. 
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INTRODUCTION 

In this paper, we give the details of an exact calculation, recently pub- 
lished, t9) of the spontaneous magnetization at points near the corner but 
on the edge of a rectangular Ising lattice of infinite extent. There has been 
considerable interest recently in the critical behavior of inhomogeneous 
systems, reviewed by Igl6i et  al. ~ For instance, in a wedge-shaped planar 
lattice with opening angle 0, conformal-theoretic methods, together with 
scaling, predict that the critical exponent for the apical spontaneous 
magnetization is f l c (O)=n/20 ,  tz'3) The important result t ic(n)= I/2 has 
been known for some time. (4) Capturing the result for 0 = n/2 has been con- 
siderably more troublesome. To start with, the usual T6plitz-deterrninantat 
methods ~5~ do not appear to apply in the corner, presumably because of the 
lower symmetry. To date, the result tic(n/2) = 1 has only been established 
by numerical solution of certain transfer matrix equations, usually (but not 
always) in the Hamiltonian limitJ 3"6-s) But in defense of such methods, 
Kaiser and Pes'chel (s) conjectured what is now seen to be the correct 
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functional form of the corner magnetization/9~ As a bonus, our method 
allows us to study the crossover between corner and edge magnetization 
analytically. 

1. S E T U  P 

Consider a rectangular Ising ferromagnetic lattice with spins a;.j = ___ 1 
located at sites (i, j)  with 1 ~< i ~< M and 1 ~< j ~< N. A configuration denoted 
{t r} of such spins on the lattice has energy 

N-- I  M N M - - I  

Z Z +,/,,J+,-4 Z Z +,,o,+,,, 
j = l  i = l  j = l  i = 1  

(1.1) 

where J~ and J~_ are positive nearest neighbor couplings. The lattice is 
assumed to be in thermal equilibrium with a heat bath at inverse tem- 
perature fl with a normalized configurational probability 

PN, M({ a} ) = Z~ t~  exp[ --flEN, ~({a} )1 (1.2) 

Here, we are interested in the spontaneous magnetization on the edge of 
such a lattice, at a distance n from the corner; this is given by 

m~(n) = lim (O'n. 10"n, N )  (1.3) 
N ,  M ~ rt:, 

where ( . )  refers to the expectation value with respect to the probability 
distribution (1.2). Physically, this expression holds provided the thermo- 
dynamic limit is taken in such a way that with probability one asymptoti- 
cally, we have a single magnetized domain in the system. We shall return 
to this point later [cf. discussion of (3.1)]. 

We use a transfer matrix working in the vertical direction. Let the 
matrix Tx account for Boltzmann factors between rows of spins, i.e., 

Tl((ai), (a~)) =exp  Kl ~'. cr,tr~ (1.4) 
i = l  

where K~ = flJl, and let T2 account for the ones occurring within a row 
between spins on neighboring columns: T2 is a diagonal matrix given by 

Tz((o'i), (o~)) = 1((o',), (o'~)) exp Kz trig'i+, 
i = 1  

(1.5) 
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where K~ = flJ,_. Then 

cpra,,, u( T2 Tl )N-1T2a,,. l ~o 
(a.. la..N) -- cpr(TaTl)~C_lT2cP (1.6) 

where the vector rp assigns equal weight to every configuration of spins in 
a row, as required by the free boundary conditions. 

We now introduce a Hilbert space H M for a row of spins as the ten- 
sorial product of M copies of the spin-l/2 space denoted H, the j th  of these 
spaces corresponding to the j th  spin on the row, counting from the left: the 
spin operators a~, where ~ = x, y, z, are defined by 

a~= 1 | 1 7 4  1 
\ 1 

where the a ~ are Pauli spin operators. We consider transfer operators V~ 
and V 2 whose respective spin representatives in the representation with a)" 
diagonal for 1 <<.j<~M are the matrices (2 sinh2K1)-M/2T1 and T_,. It is 
easily seen that these operators are self-adjoint and given by 

( ) V~=exp - K *  , Vz=exp K2 2 o):a]+, (1.7) 
j= l  j = l  

where the dual coupling constant K* is defined by e x p ( - 2 K * )  = tanh K~. 
Equation (1.6) becomes 

<oI a,~( v2 v,)N-'  v2a,; IO> 
<(Tn.l(Tn.N> = <01 ( V 2 V l ) N _ l V  2 iO > (1.8) 

where the state 10) is represented by the vector ~p introduced in (1.6) 
to describe the free boundary conditions; this state can be defined by 
a~ 1 0 ) = - [ 0 )  for I<~j<~M. The factor (2s inh2Ki)  Mp- left out in the 
definition of V~ gets canceled out between the numerator and denominator. 

It is useful to introduce the symmetrized form V ' =  V~f-V,_ V~/'- for 
analysis of (1.8), giving 

(01 o,, v'No*,, 10) 
(a,,.la,,.N)= (01V' re [0)  (1.9) 

where t~,,= VII/2tr,,VI 1/2. This will be developed in the next section by 
spectral decomposition of V'. 
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2. SPECTRUM OF THE TRANSFER MATRIX 

Fortunately the spectrum of V' has been worked out elsewhere, I]~ ~) 
so we shall introduce some notations and summarize the results. First, 
consider the Jordan-Wigner ~]2' ~3) transformation to fermions defined by 
f ]  = Pj_~ o -+, where a + = (of. + iaf)/2 is the spin raising operator, Po = I, 
and Pj=I-I~=I (-cry) for I<~j<~M. The anticommutators are the fer- 
mionic ones [ f f ,  fk] + =Jjk and [fj ,  fk] + =0,  and the Fj defined by 
F2j_, = f ]  + f j  and F 2 j = - i ( f ] - f j )  satisfy 

[r~, r~] + =26j~ (2.1) 

and are therefore spinorsJ 14) We express the transfer operators (1.7) in 
terms of the spinors using 

tr}= --iF2j_,F2j for 1 <~j<~M 

ojtr):"+l =iF~F~+ 1 for 1 <~j<~M- 1 
(2.2) 

If the lattice was a cylinder rather than a rectangle, we would have to con- 
sider the additional term tr~ttr ~ = - i P M F 2 g F  ~ . The action of the operator 
P~ ,  which we shall hereafter denote by P, is to flip all spins in the row; 
P is a symmetry of the problem: 

[P, V]]_ =0,  [P, II2]_ = 0  (2.3) 

The quadratic structure of (2.2) in the Fj together with the anticommuta- 
tion rules (2.1) implies a linear Euclidean evolution 

V,I ,rV,  -1 = F r R  (2.4) 

The existence of V'-]  is clear for finite M. R is self-adjoint, and satisfies 
R R r =  1 because its action on the spinors preserves their Clifford structure 
(2.1). It can be diagonalized and its eigenvalues occur in pairs e +rCk), where 
~,(k) is the nonnegative solution of 

cosh y(k) = cosh 2Kj* cosh 2K2 - sinh 2K1" sinh 2K2 cos k (2.5) 

If we define the eigenvector Yk by RYk= e~'(k)yk, then O,,*--,,-r(k),,* The ~t~-..Vk - -  ~ -  . . r k  - 

operators 

2 M  

Xk= ~ yjkFj (2.6) 
j = l  
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satisfy the evolution V'Xk V ' - t  = e r ( k ) X k .  Provided that the eigenvectors 
are normalized by llYkll2- - 1/2, these operators are fermionic, allowing us 
to define new spinors 

[ '~_ ,  = X-rk + Xk, l~zk= --i(Xtk-- Xk) (2.7) 

They are related to the old ones by a matrix 

2M 

t ,  = E r (2.8) 
j = ]  

with all the elements of { being real and { { r =  {r{ = 1. This permits us to 
invert the relationship (2.8). Expressing { in term of the eigenvectors y 
gives 

f J =  ~ X~k(Y~_j--t.k + iy2j. k) + Xk(Y~'--,.k + iy~,k) 
k 

Since V' is unimodular, the diagonalization of R translates into 

(2.9) 

V'=exp  ( - -  ~k ?(k)(X~kXk--�89 ) (2.10) 

There are 2M eigenvectors, hence M values of k giving nontrivially dif- 
ferent Yk; these are the solutions ot ~m) 

e iMk  = - -  ioLe i6*lk) (2.11 ) 

where 0c = + i  and J* can be defined by 

e 2i6*(k)- (Beik-- 1)(eik--A) and ei6*(~ 1 (2.12) 
(Ad* - 1 )(eik - B) 

with A = coth K* coth Kz and B = coth K~" tanh K2. 
The appearance of 0t can be understood by appealing to the reflection 

symmetry Z" possessed by V', which is defined by Z'trq27 -~ = t r y +  ~_j for 
q = x, y, z and I ~ j ~< M. This imples 

S, F2j_ 12~ - l = _ iPF2 m -  2j + 2 
(2.13) 

Z F 2 j ~ - t  = iPF2m_ 2j+ I 

Since the eigenvectors are given by 

y2zl ,=Nksin(kj-~po(k))  and y2.i_l.k=iNksin(kj--~pl(k)) (2.14) 
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where 

A - e  ~ 
e 2iq~~ and e i~'~176 = 1 

A - - e  - i k  

1 - B e  ik 
e zi~''(*) and e i~'c~ = sgn(T-- To) 

1 - -  B e - ~ k  

(2.15) 

then (2,11 ) gives 

Y2M--2 j+2 = - -o~Y2 j - I ,  Y2M-2j+I =~ (2,16) 

This relationship, which was deduced from the structure of R, implies an 
interesting reflection behavior, namely XXks = - i~PXk.  Using (2.16) in 
(2.9) gives 

f~  --- f ~ - j +  l = Z (X~*( 1 T io~k)(y2j_ , . ,  + iyzj. k) 
k 

+Xk(1 +_i%)(y*2y-t .k+iy~' ,k))  (2.17) 

Returning to (2.11), it turns out that below the critical temperature, and 
when M is big enough, there are only M -  1 solutions with k real giving 
distinct eigenvectors. The last mode has a pure imaginary wavevector 
k = i ~ ( 0 ) +  O(exp[ -2M~(0) ] ) ,  where the function ~ is defined by (2.5) 
with Kj and K2 interchanged; we have exp[~(0)] =B.  This mode gives 
asymptotic degeneracy in the spectrum since y(i~(0))= 0; precisely, 

Yc = y ( k )  = 2 sinh 2K* sinh 9(0) e-M~~ 1 + O ( e -  M,~(o))) (2.18) 

The expression for the corresponding eigenvector is 

[ sinhy(0)] uz 
Y2j, c = e-(M-Y+ 1/2) ~(o) + O(e-  M~(ol) 

[ sinh_~(0)] ~/-' (2.19) 
Y 2 j _ l , c = i  -- e - ( J - U 2 ) ~ ( o )  + O(e -M~(o) )  

and its reflection behavior is given by 0% = i. 
The final detail needed to develop (1.9) is the vacuum for the Xk,  

denoted 1r This state is the maximum eigenvector of V', is non- 
degenerate for any temperature (provided M is finite), and since V' is 
invariant under parity, 1r is an eigenstate of P; the corresponding eigen- 
value is conserved by continuity, so we can determine it by taking T ~  0% 
in which case V' goes to V~, and 1r goes to I0> (a row of free spins) 
which is even, so at any temperature P Ir = Ir 
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3. DERIVATION OF AN INTEGRAL EQUATION FOR THE 
M A T R I X  ELEMENT 

Returning to (1.9), notice that ),(k) t> 7(0) > 0 strictly away from the 
critical point. Thus we only expect the term 

eJV,, [(0l djX~ IO> -" 
I <o1~> 

(3.1) 

to be significant in the spectral decomposition, and then only if the thermo- 
dynamic limit is taken so that N?,. ~ 0 as M, N ~  m. Recalling (2.18), this 
means N cannot grow faster than exp[Mp(0)]. This limit on the acicularity 
of the domain suppresses the formation of more than one magnetic domain, 
just as it did in the scaling theory of surface tension on a cylinder. ~5' ~7~ 
Thus we expect the magnetization along the lower face of the strip at a 
distance j from the corner to be given by 

m ~ ( j ) = e  ~ lira 
~ , ~  ( 0 1 ~ >  

(3.2) 

This is obvious for j = 1 and follows for 2 ~< j <~ M because 

= eK?( 01YlT-I l (0l #j ( - a~ ) f j  (3.3) 
1~1 

and (0[ ( - a ~ ) =  (0l. Such a reduction to a bilinear form as appears in 
(3.2) is special to the edge. If we go to the next layer in, the analogous 
equation involving four Fermi operators can be given, and so on. 

Using reflection symmetry and (2.17) gives 

e K ?  / 
2im i c)( * -iy c) m e ( j )  = ~ - -  Y 2 j -  1. c - ,  

- ~ (1 + i O ~ k ) ( y 2 j _ , . k - - i ) % . k  ) (OI)(tkX~ 1 0 ) )  
k~O.,,I (0 [  O) (3.4) 

Using oddness, in k of yj, k and )(t k, we have 

m,,( j )  = eKt Mlim-- ~ ( ( Y2J- 1 "  . . . .  -- iy~. c) -- 
k E ( - - n , n )  

c~ k = -- i 

e - i ~ ~  --i~l(k) "~ 
.T2 i k j _ _  K M ( k  ) 
IV k e  e-i~~ ) 

(3.5) 
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where 

e- i~ '~  - i~ 'a~ (0l X~kX~ I~ )  
K M ( k )  = (3.6) 

Nk ( 0 1 ~ )  

for 0c k = - i .  The problem of evaluating this matrix element can be solved 
from the 10) vacuum property by considering (01Tiffin)=0 for 
1 ~< j ~< M. Using reflection symmetry and (2.17) with a plus sign, then odd- 
ness and (3.6) give 

1 ( B  2 -  1)l/-" 
~_~ N~ei~JKM(k)  = i 

~k ~ - - i  

(e-J'~t~ _ e-tM-J'+ I) f(O)) (3.7) 

Choosing the minus sign in (2.17) leads to a similar equation for ~k = i, but 
with zero on the right-hand side, which strongly suggests a selection rule 
associated with the reflection symmetry. 

We now convert (3.7) to an integral equation. We first multiply by 
e -Uq and sum on j. We consider only wavevectors q satisfying a constraint 
similar to (2.1 l) for k, so that the appearance of terms with k = q is under 
control for any M. Equation (3.7) becomes 

E 
k ~ { --rt ,  rt) 

~ t k ~  - - i  

ei(k - q) 
1 - e i(k-q) ( 1.4- e ila*tk) -6*tq))) N ~ K M ( k )  

B - 1 e -- iJ*(q) ~ 
= i(B 2 -- 1)1/2 (eiq--_-B_ 1 + e~-7~-~_Bj 

f o r  O~q = i, and 

(3.8) 

M N  qK(q)  + ~, 
k ~ ( - - n .  Tt) 

k ~ q  

eitk -q) 
1 - e irk-q) ( 1 + e i(6*('~') -- J*(q)))  N ~ . K M ( k )  

B - l  e-;a'~qr~ 
= i( B2 - - 1 )  U2 ( e i q~ -B _  I eiq _ B j (3.9) 

for (Xq= --i. 
We give in Appendix A an informal argument showing that the 

sequence K M ( e  ik) has a subsequence converging uniformly in an annulus 
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o~-~< leik I < ~ ,  allowing us to take the thermodynamic  limit on (3.8) and 
(3.9), thereby giving integral equations for the limiting K: 

p ., e i (k  - -  q) 
~ f_ ,  dk e i (k-q)_  1 ( 1 + e i(6"[k) - -  d i * ( q ) ) )  K(k)  

,,2 ( =-2i(82-1) \e,._--~_,+ ei.,---~-~ / 

P f~ eitk -- q) 
- K ( q )  + ,~ dk ei(k_q) - 1 (1 - -e  i(a'(k)-a*(q))) K(k)  

f = --2i (B 2 -  1) l/z \ e i q ~ _ l  e , q _ B J  

(3.10) 

(3.11) 

Summing these two equations,  we obtain 

f e i(k-q) 1 
K(q) - - ~  P -,~" dk ei~k_q) -- 1 K(k)  =4i (1  - - B - Z )  l/z e--~_B_ 1 (3.12) 

which we shall solve in the next section. 

4. SOLUTION OF THE SINGULAR INTEGRAL EQUATION 

The Hilbert  t ransform H is defined for functions analytic on and near  
the unit circle by the principal par t  integral 

P t" t 
( H f ) ( z )  = / - -  J t f ( t )  (4.1) 

in I t l = l  - - 2  

We set z = e 'k and introduce K(z) as a synonym for K(k); the function K(z)  
is expected to be analytic in an annulus ~-~ < Izl <~.  The problem posed 
by (3.12) is to solve 

4i( 1 -- B -2 )  1/2 
K ( z ) - ( H K ) ( z ) -  z _ B _  l (4.2) 

This means that  the function 

2i( 1 -- B-z)1/2 
K + ( z ) = K ( z )  _-7 B -1 (4.3) 
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satisfies ( 1 - H )  K+ =0.  The function K+ is analytic in the same annulus 
~ - 1 <  Izl <0~ as K provided ~ < B ,  hence can be developed in Laurent 
series, and (4.3) says that terms z ~ with n < 0  vanish in this expansion, or 
equivalently that K+ is analytic for [z[ < a. Its form is determined from the 
oddness in k of Y,,,.k, which gives K(z-1)={exp[i(k+d*(k))]} K(z), 
hence a relationship between K+(z -1) and K+(z). First note that 
exp[id*(k)] =r(e ik) ~'-l(e-ik), where r is defined by 

r(z) = and r( 1 ) > 0 (4.4) 

Then we have 

f zr(z) zr(z) K+ (z) - v(z -1) K+(z - -1 )  = --2i( 1 -- B-2)1/2 \~---B----l 
B z r ( z  - 1) 

~- ~ _ ~ /  

(4.5) 

The first term of the left-hand side of this equation is analytic for [z[ < ~, 
whereas the second term is analytic for [ z [ > ~ - ' ,  and the right-hand 
side is analytic on the annulus, allowing application of the Wiener-Hopf 
technique; the operators �89 1 + H) and �89 1 - H), respectively, project on the 
spaces of functions "analytic inside" and "analytic outside, vanishing at 
infinity." 

We find that 

zr(z) K+(z)=2i(1-B-2)I/2\z_B-I z_B-1 

B'-r(B-I) ) 
-~ + Br(0) (4.6) z - B  

is an entire function (analytic everywhere), bounded by a constant, since its 
Laurent series has no terms with n/> 0, so by Liouville's theorem is a con- 
stant; calculating its value for z = 0 finally gives the result 

K(z) =2i(1 --B-2) 1/2 r (B-l ) (1  --B)(1 +z )  r - l ( z )  
(z--B)(z--B -l) (4.7) 

or equivalently without using r 

K(z)= - -4 i (A- -B- l )  j/2 sinh(~(0)/2)(1 +z) 
[ (z -  A)(z-- B) ]m(z -  B -1) (4.8) 
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provided the square root in the denominator is chosen negative for z = 1. 
We have proved that this is the only solution to (3.12), so that all 
uniformly convergent subsequences of KM (see Appendix A) have this same 
limit, proving that the sequence itself converges uniformly to K. 

Equation (3.10) could be solved directly by noting that the operator 
on the left-hand side first occurred in Yang;s work on the bulk spontaneous 
magnetization (~s) (if we replace B by B-I) .  Thus we extend Yang's analysis 
to the case T >  Tr (19"20) The integral operator is invertible explicitly using 
Onsager's elliptic substitution (25~ (see Appendix B). This analysis, which is 
the first method by which we obtained the result, is considerably more 
protracted than the Wiener-Hopf method described above. 

5. MAGNETIZAT ION 

We take the thermodynamic limit of (3.5) as we did for 3.10): 

me(j)= e~K~-(-i(B2-1)I/2B -j 

P f, e-i~~ )1 
4in =1 = I z j -  1 dz e-iCp~ - ~ e  ~ K(z) (5.1) 

Using 

e-i~ootk) e-q,~(k) e-2i~oo(k).~_e-2igot(k) 2e--,potk)-i~o~tk) 

e-itpo(k) .~_ e - ~ t  (k) = e -  2i~ao(k) __ e -  2itpl (k) e -2i~p~ - -  e-2itpl (k) 
(5.2) 

allows us to decompose the integrand in (5.1) into two terms with different 
analytic structures. The first term 

7J-- 1 e--2iq~~ "l- e -2icp~(k) 
- e - 2ir (k) - -  e-2~'P~ (k) K(z) (5.3) 

has a branch cut between A and B and a pole in B-1 due to K, a pole in 
1 from to the other factor, and a singularity at infinity because of z j -  i; its 
principal part integral is thus 

p f z  j - I  
e - 2i~ao(k) ..1_ e - 2;~o~ (k) 
e_2i~ao(k) - e_2i~al(k)K(z) dz 

= -4n [(A-- I)(B-- 1)]1/2 
- A f f ~  J + 4roB -J(B 2 -- 1 ),/2 (5.4) 
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The second term on the right-hand side (residue at B-~) cancels exactly the 
contribution of the X~ mode in (5.1). 

The second term arising from the decomposition (5.2) 

Z j - I  ( - -  2e-i~~176 "~ 
e ~ _ ~ f ~ ( t k ~  j K( z ) (5.5) 

has a branch cut between A -  1 and B-1, a pole in 1, and a singularity at 
infinity. For j = 1 that singularity is a single pole and we obtain 

2e - i~oo(  k ) - i~al ( k ) 

P f z/-l ( -  e_-~_, .~~tk)j  K(z) dz 

=4n  [(A - 1)(B-- I/2 
~/B-~ ]- 1)] 

Hence the corner magnetization is 

1 - - B  - 1  

- 16n sinh(~(0)/2) 
(A - B-I)1/2 (5.6) 

B j / 2  - B -  1/2 
m~( 1 ) = e r~ (5.7) 

(1 - A - 1 B - I ) 1 / 2  - B I / 2  __ A --I/2 

The critical exponent is immediately seen to be 1, since 9(0)= 
ln B oc (Tc--T)/Tc near the critical temperature. Equation(5.7) can be 
turned into a formula conjectured by C. Kaiser and I. Peschel where 
symmetry in the exchange of K1 and K2 is evident: 

m,,( 1 ) = 1 -- �89 K I -- 1 )(coth Kz - 1 ) (5.8) 

For large j it is not longer practical to calculate the residue at infinity of 
(5.5) and we express (5.6) in term of an integral along the branch cut 

2 e  - R ~ 1 7 6  l - Rot ( k  } 
" 

==----7~sinh())(O)/2~ r"-' x/---i dx (:~----A-'.'~ '/2 
+ 8 ( / / - - A - ' ) m J . , - = a - ,  l - - x  \ 1 - B x  / 

(5.9) 

giving 

m"(J)=l--~me 1 ~ fx.-A-,. _ i--.s \ B - ' - x J  (5.10) 
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where the edge magnetization me is 

f - 1)(B-- 1)'~ 1/2 (coth 2 K * - c o t h  2K2"~ 1/2 
m~ = eXt \ ( A -A-~-i--1 ] = k, -co-~-2-~ Z-1 ./ (5.11) 

in accordance with ref. 4. We consider two limits of Eq. (5.10). First, for 
j ~ ~ at constant temperature the integral is dominated by the neighbor- 
hood of B- i ;  using a change of integration variable to x = B - l e  - '  gives 

i.e., 

me(j) 1 - -B - j  ( 1 - A-19  .~,/2 1 ft,(A/a)e-J, 
me ~ ( 1 - A - 1 ) ( 1 - - B - I ) ]  ~ , = o  x / t  dt (5.12) 

me(j) ~ me - -  e K? e-~J- l) e(o)(n j sinh 2K l sinh 2K2) -i/2 

A short discussion elsewhere c91 makes it physically reasonable that the 
prefactor in the exponential decay of (5.12) is j-1/2 by appealing to the 
bubble model. (2u 

The second limit is the scaling one, which is taken approaching the 
critical point with the distance j increasing proportionally to the correla- 
tion length; we choose as rescaled distance the parameter r =j~(0). Using 
the auxiliary variable u defined by x = exp[ -9(0)(1 + u2)] gives the follow- 
ing expression for the scaling function: 

e--r{l +u2) 
F(r)= lim me(j) 1 2 s  ~ . . . .  du (5.13) 

9(o)~o m e ~ ~,=o 1 + u  2 
jg(0) = r 

Differentiating and then reintegrating with respect to r gives F as a 
Gaussian error function: 

F(x)= f "  e-Y dY 2 f , /7 _,, :,=0 (roy) u2 x/~ .... ~ e -  dy = erf(x/~) (5.14) 

The short-distance behavior is F(x)~2(x /n )  I/2. Note that using this 
formula and m e to obtain the corner magnetization gives the correct 
exponent (one), but not the correct prefactor. 

APPENDIXA. AN INFORMAL CONVERGENCE ARGUMENT 

The matrix element 

<Ol 
Nk<0 I ~> (A.1) 
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can be expanded using (2.6) as a sum of the form 

eU k <0] f]XT,. I~)  (A.2) 
j=,~ <01r 

multiplied by functions independent of j analytic in the annulus 
B-  ~ < legk[ < B. We consider 

(egk_ 1) ~ euk<Olfi~ 1r 
s=L < 0 1 r  

= ~ eUk <01 ( f j _ , - f f l  X-~ 1r 
j=t  <01 o> 

+ surface terms (A.3) 

We anticipate (a spectral gap argument suggests this strongly, but we have 
no proof) that the magnetization along the edge decays exponentially away 
from the corner to the edge value on a length scale of the bulk correlation 
length, hence that 

<ot (fj_,-fj) ~ I~> 
(b-i ~ ~< C~ -i  (A.4) 

where C and e are independent of M, and 0~ > 1. Then each function in the 
sequence 

(eik- 1) (0l ~X~,. I~)  (A.5) 
Nk<0 [ ~> 

will be analytic and uniformly bounded on the annulus oc -~ <[eit[ <0~ 
(provided 0c < B). Thus, by a theorem ~=~ sometimes known as Montel's 
(Theorem 12.8a in ref. 23 is attributed to Montel) this sequence will contain 
at least one uniformly convergent subsequence, with an analytic function 
for limit. Similarly, the K M ( e  ik) will contain such a subsequence because a 
potential singularity at e i k =  1 is removable. 

Care is needed in taking the limit as M ~  oo in (3.5), (3.8), and (3.9) 
since the k's which solve (2.11 ) are not uniformly distributed in general, so 
Cauchy principal part integrals could create problems. 

Define 

F~,( k ) = e iMk + kxe ia*(k) (A.6) 
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Then the zeros of F~(k) are the eigenvalues to be inserted in (2.14) and a 
tedious calculation shows that 

INk1-2 = 2(M - 6*(l)(k)) = - 2ie -iMk dF~ 
dk 

(A.7) 

Let the function f (k )  be 2n-periodic and analytic in a strip IIm k[ < p .  
Consider a contour C which surrounds the zeros of F~(k) which lie on the 
real axis in - n  < k ~< ~ but lie inside the intersection of IIm kl < p and the 
domain of analyticity of exp(i6*). The residue theorem gives 

L ~  dk eiMk f (k )  e ~'tk 
2& c F - - ~  f ( k ) =  ~" dF~/dk - 2 i  kE(--n,n) kE(--n,n) 

1gd2 f(k) (A.8) 

On the other hand, it is easily shown that 

a~im fcdk eiMk n__n F---~f(k) = ~_  f (k)  dk (A.9) 

This is a Riemann integration result in partial disguise. 
The cases of significance have singular f(k). To obtain (5.1) from 

(3.5), note that the function standing for f (k )  has a simple pole at k = 0  
(mod 2n). This value is not in the eigenvalue set, since 0 r  Equa- 
tion (A.8) is now 

1 1 e iMk 
--2i~, INkl'-f(k)+~Res f ( k = O ) = ~ - ~ n ~ c d k ~ f ( k )  (A.10) 

As M---, 0% the right-hand side of (A.10) tends to 

2inJ ,~_ , f (k )dk= _ f ( k )dk+-~Res f (k=O)  (A.11) 

Thus 

lim 2 ~. INkl2f(k) = ~  f (k)  dk (A.12) 
M~ c~ _n 

a result which can be applied to both (3.5) and (3.8), noting that the extra 
singularity at k = q is not in the solution set for k since cr k = - % .  Finally, 
the singularity in the integrand of (3.9) is removable, so the strip-analytic 
case for f suffices. 

822/81/3-4-2 
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A P P E N D I X  B. S O L U T I O N  OF THE INTEGRAL E Q U A T I O N  BY 
ELLIPTIC S U B S T I T U T I O N  

We discuss the solution of (3.10) by an alternative method which goes 
back to the work of Yang t~8~ on the bulk spontaneous magnetization of the 
planar Ising ferromagnet. There, and in subsequent work by Chang t4) and 
Abraham, t~9~ the following singular integral operator is considered: 

( Y+ f ) ( q )  = p ~2. dk 1 + ei(,~,(/,)_,~,(q))] 7[ ao e i(k-q)- 1 [1 f ( k )  (B.1) 

where the angle 6' is obtained from the 6" in this paper by replacing B with 
B - i ,  with the branch determined by 6 ' (0 )=  n. 

Let us define the functions fo(k) and L(k) by 

fo(k) = elk~[ (e 'k - A)(e 'k - B - l ) ]  ,/2 (B.2) 

and 

e'kK(k) = L(k) fo(k) (B.3) 

so that (3.10) becomes 

~'~ 1 ei(,~.(, ) -- t~*( q) } ] f o( k ) L( k ) P-- dk eitk_q } [ 1 + 
rt _~ - 1 fo(q) 

=_4 , (BZ_ l ) , / 2B_ , / 2 (B_ , , 2  (\ei_~__._ff__,jeiq_A ,~,,2 + A ',2 \(eiq--A-')'/2)eiq-B J J 

(B.4) 

where the right-hand side vanishes at q = 0. The point of this is that the 
new singular integral operator on L becomes particularly simple in action 
under the conformal transformation 

with 

k c n i a d n  u - d n  &cn  u + u ( 1 - k  2) snu  z(u) =e i'~ 
M(u) ' "o 

M(u) = dn ia dn u - k cn ia cn u 

(B.5) 

(B.6) 

which was introduced by Onsager t25) in terms of Jacobi elliptic func- 
tions. (26) Equations (B.5) and (B.6) are correct for all T, but the assignment 
of ia and k depends on s g n ( T -  To). For T <  Tc it is 

k = (sinh 2K1 sinh 2K_,)-1 (B.7) 
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and 

sn ia = i sinh 2/(2 (B.8) 

It follows from (B.5), (B.6), and (2.5) that 

and that 

dco (1 - k  z) 
(B.9) du M(u) 

1 - k  2 
sinh ~,= - i s n  ia (B.IO) 

M(u) 

Our strategy for solving (B.4) is to determine the spectrum of the integral 
operator on the left-hand side and then to expand both L(k(u)) and the 
right-hand side of (B.4) in terms of the eigenvectors. Provided there is no 
zero eigenvalue, this procedure allows us to evaluate the coefficients of L 
in this expansion, and eventually to identify L. Calling J(u, u') the kernel 
in the left-hand side of (B.4) expressed in terms of the u variables, we have 
the eigenvalue problem 

P f4rj(u, u') g(u) du = 2g(u') (B.11) 
~0  

The following properties of z(u) are useful: 

1. z(u) is double-periodic with periods 4K and 4iK'. 

2. z(u) is singular at the simple zeros of M(u), which are at i(a +K') 
and i(a + 3K') modulo 4K and 4iK'. 

3. In general, there are two u values in the unit cell for each z value. 
For T <  Tc the exceptions are z(iK')=A, z(3iK')=A -t,  z(2K+iK')=B, 
and z(2K+3iK')=B -L. If T >  To, then B and B -~ are interchanged. 

4. For z values where there are two u values, such u values give equal 
and opposite values of exp(i6*). Thus the period rectangle in the u plane 
corresponds t6 both sheets of the Riemann surface of exp(i6*) and its 
branch points become simple poles and zeros in the u plane. 

These properties indicate that for u and u' in the same period rec- 
tangle, J(u,u') has a simple pole at u=u' with residue 2 and no other 
singularities. 
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To complete an investigation of (B.11), the periodicity of J(u, u') is 
needed. Using the properties of the elliptic functions, we find that all 
factors in J(u, u') except fo(k(u)) and fo(k(u')) are double-periodic with 
periods 4K and 4iK'. 

The function z(u) sends the line 0 ~< u < 4K into the unit circle in the 
z plane. Thus 

f•Kdudl~176 dzdldg f~ 

1) 
= - ~  dz -q_ , _ B _  1 

= {oiZC fOrfor TT<T"> Tc (B.12) 

Since dlogfo/du is periodic in u with period 4K, (B.12) implies that for 
T<  To, fo changes sign by translation of 4K, and that for T >  Tc,fo 
is periodic with period 4K. On the other hand, the line 2K+ iu with 
0 ~< u ~< 4K' except for infinitesimal indentations at 2K + iK' and 2K+ 3iK' 
goes into a union of two loops about z = B and z = B -  ~ connected by real 
lines of intermediate points. Thus a repeat of the argument involving (B.12) 
with the new contour shows that fo is always antiperiodic for shifts of 4iK'. 

J(u, u') has the same periodicity properties in each of its variables, 
implying for T <  T c that g(u + 4 K ) =  -g(u). It is clear that 

g,,( u ) = (4K) -1/2 e""' + l/2)r~u/2K (B.13) 

are orthonormal eigenvectors of (B.11 ) with eigenvalues 

2 m = 2 ( 1 - - q  2re+l) 
1 +q2.,+l (B.14) 

where m is any rational integer and q =exp(-rcK'/K).  
Continuing our strategy, we now check that the right-hand side of 

(B.4) is antiperiodic for translations in u of 4K and 4iK'. Obtaining the 
expansion over the eigenvectors is relatively simple because the branch 
points become simple zeros and poles. The right-hand side of (B.4) is 

~,, n(m + 1/2)/2 q3(m + 1/2)/2 -4i(  AB - 1 )1/2~ 1 ) ' n  e i ( m  + l / 2 ) m , / 2 K  "~ - -  

BU2kU2K ( -  1 +q2m+l 
- -  r  

(B.15) 
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so we obtain the result 

-- 2i(AB - 1 )1/2~ ~ ( -- 1 ) ' e  i(" + I]2)nu/2K q(", + 1/2)/2 
L(k(u)) = 7 Bl/2-----kl/--2--I~ -o~ 1 + qm+ 1/2 (B.16) 

We now use a Landen  t ransform with qo = x /q  and the associated complete 
elliptic integrals Ko = (1 + k )K  and K~ = ( 1 + k)K'/2 with new modulus  
ko = 2 x/Ok/( 1 + k): 

4n( AB - 1 )  l/2 ~ ( - 1 ) "  qg' + l/2 ( 1)  nu 
L (k (u ) ) -  ~ - -  ~ 2.,+1 sin m +  (B.17) 

B k - K  o 1 + q o  

which is readily identifiable ~26~ in terms of elliptic functions of  modulus  ko 
a s  

L(k(u)) = 4  1----~ sd((1 +k)u/21ko) (B.18) 

The solution is expressed in a more  t ransparent  from by finding a function 
of z with the same zeros, poles, and periodicity factors when translated to 
u. Such a function is 

( z + l )  
c [ ( z _ B ) ( z _ B _ l ) ] l / 2  (B.19) 

which is 4K-antiperiodic and 4iK'-periodic. The constant  c is fixed by 
considering the behavior  at u = 2K, i.e., z = 1. This is the first method of 
solution which we found for (3.8). There is an analogous method for (3.9). 

APPENDIX C. HAMILTONIAN LIMIT 

We explore the connection between our work  and the Hamil tonian-  
limit work  of Barber et al. (31 First note that  in ref. 3, K2 is specified as the 
coupling in the transfer direction. Retaining our  labeling and letting 
K1---, m and K 2 ~ 0  so that  2 = K 2 / K *  is fixed, we see that  2 = B  and 
A --* m in the formulas of  this paper  in order to capture the Hamil tonian  
limit. Referring to (2.5), (2.6), and (2.10) we find that, asymptotically,  

where 

V',~exp ( - -2K*  ~ e(k)(~'~kXk--�89 ) (C.1) 
k 

e(k) = ( 1 + 22 - 22 cos k)1/2 (C.2) 
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and the )7 k are obtained from (2.6) by taking the Hamil tonian limit on 
(2.14) and (2.15). Note  that in (C.2), our  wavenumber  is shifted from that 
of  ref. 3 by ~. Using the Hamiltonian limit of  (3.6) allows a connection to 
be made to the function F of  ref. 3 [see their Eqs. (6.11 ), (6.20), and the 
following line; also see their (6.22)'1. Taking our  (3.11) and pairing k with 
- k  in the integral, and noting the effect on K(e ~k) of reversing k expressed 
in the paragraph between (4.3) and (4.4), gives Eq. (6.21) of  ref. 3 after 
some algebra. In ref. 3 the authors did not write down the Hamiltonian- 
limit analog of  our (4.2) and were therefore not led to the analog of  our  
(4.1), which is the key to the Wiener -Hopf  treatment, nor  did they notice 
the relationship to the Yang singular integral operator. 

Finally, the key equation (6.12) in ref. 3 is the same starting point as 
ours, based on the technique adumbrated in refs. 19 and 20. 
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